首页
搜索 搜索
当前位置:企业资讯 > 正文

高中数学《曲线和方程》第一课时优秀说课稿_全球播报

2023-06-11 12:22:39 互联网

以下是小编帮大家整理的高中数学《曲线和方程》第一课时优秀说课稿,仅供参考,欢迎大家阅读。如果这17篇文章还不能满足您的需求,您还可以在本站搜索到更多与高中数学《曲线和方程》第一课时优秀说课稿相关的文章。

篇1:高中数学《曲线和方程》说课稿

各位领导、专家、同仁:你们好!

我是广安市乐善中学的数学教师蒋永华。我说课的内容是“曲线和方程”。下面我从教材分析、教学方法、学法指导、教学程序、板书设计以及评价六个方面来汇报对教材的钻研情况和本节课的教学设想。恳请在座的专家、同仁批评指正。


【资料图】

一、材分析

1、教材的地位和作用

“曲线和方程”是高中数学第二册(上)第七章《直线和圆的方程》的重点内容之一,是在介绍了“直线的方程”之后,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“形”与“数”的相互转化开辟了途径,同时也体现了解析几何的基本思想,为解析几何的教学奠定了一个理论基础。

2、教学内容的选择和处理

本节教材主要讲解曲线的方程和方程的曲线、坐标法、解析几何等概念,讨论怎样求曲线的方程以及曲线的交点等问题。共分四课时完成,这是第一课时。此课时的主要内容是建立“曲线的方程”和“方程的曲线”这两个概念,并对概念进行初步运用。我在处理教材时,不拘泥于教材,敢于大胆进行调整。主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导学生进行观察、讨论、分析、正反对比,逐步揭示其内涵,然后在此基础上归纳定义;再一点就是在得出定义之后,引导学生用集合观点来理解概念。

3、教学目标的确定

根据教学大纲的要求以及本节教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断点是否在方程的曲线上、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。

4、学重点、难点和关键

由于曲线和方程的概念体现了解析几何的基本思想,学生只有透彻理解了这个概念,才能用解析法去研究几何图形,才算是踏上解析几何的入门之径。因此,我把曲线和方程的概念确定为本节课的教学重点。另外,由于曲线和方程的概念比较抽象,加之刚刚进入高二的学生抽象思维能力还不是很强,因此,他们对曲线和方程关系的“纯粹性”与“完备性”不易理解,弄不清它们之间的区别与联系,易产生“为什么要规定这样两个关系”的疑问。所以,对概念的理解,尤其是对“两个关系”的认识是本节课的难点。

如何突破这一难点呢?由于学生在学习本节之前,已经有了用方程表示几何图形的感性认识(比如用方程表示直线、抛物线、双曲线等)。因此,突破这一难点的关键在于利用学生积累的这些感性认识,通过分析反例,来揭示“两个关系”中缺少任何一个都将破坏曲线与方程的统一性(即扩大概念的外延)。

二、学方法与教学手段的选用

根据本节课的教学内容和学生的实际水平,我采用的是引导发现法和CAI辅助教学。

(1)引导发现法是通过教师的引导、启发,调动学生参与教学活动的积极性,充分发挥教师的主导作用和学生的主体作用。在教学中通过设置疑问,创造出思维情境,然后引导学生动脑、动手、动口,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。

(2)借助CAI辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。(这也符合教学论中的直观性原则和可接受性原则。)

(3)教具:三角板、多媒体。

三、法指导

古人说得好,“授人以鱼,只供一饭;教人以渔,终身受用。”我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。因此,在本节课的教学中,引导学生开展“仔细看、动脑想、多交流、细比较、勤练习”的研讨式学习,加大学生的参与机会,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、“会类比”、“会分析”、“会归纳”的能力。

四、学程序的设计

首先是“复习引入”。我先引导学生回顾本章第二节中直线与二元一次方程的关系,并让学生指出二者能互相表示时满足的条件。然后,在此基础上提出“平面直角坐标系中一般曲线和二元方程之间要建立这样的对应关系,也就是能互相完整地表示时,需具备什么样的条件呢?”从而引出将要学习的课题――曲线和方程。这样引入课题显得比较自然,也符合由特殊到一般的思维认知规律。同时,直线与二元一次方程的关系也为下面研究一般曲线与二元方程的关系提供了一个实际模型。(本环节用时约分钟。)

第二个环节“设疑导思”。在课题引出之后,我把刚才引入课题时的问题(即:一个二元方程f(x,y)=0的解与平面直角坐标系中一般的曲线C上的点需满足什么样的条件,就可以用方程f(x,y)=0来表示曲线C,同时曲线C也可以来表示这个方程f(x,y)=0?)再次交给学生,让他们进行思考、讨论,然后请学生

内容如下:

代表发表意见,我适当地集中学生的观点,并逐步将其归结为两点:①曲线上点的坐标满足方程f(x,y)=0,②以方程f(x,y)=0的解为坐标点在曲线上(学生用类比的方法和积累的用方程表示曲线的感性认识,是可以猜想出这一条件的),但我对学生的观点不作评判(这样就留下了悬念)。这样设计的意图在于:此思考题是本节课的核心问题,在这里提出来是为了给学生一个明确的学习目标;同时,也是为了通过问题给学生营造出思维情境,调动起他们的思维。给学生留下悬念,是为了激发他们的学习热情和求知欲望,从而使他们主动参与到后面的教学活动中来。(本环节用时约分钟。)

接下来我就引导他们进行“实例探究”。首先用电脑投影例题1,让学生对例题进行分析、讨论,并动手画图,然后口答二者的关系。最后,由我给予订正,同时用电脑显示相关结果。设计此例的目的是让学生从正面认识曲线和方程互相完整表示时所具有的两个关系,即“(1)如果点M(x0,y0)是C1上的点,那么(x0,y0)一定是方程的解;反过来,(2)如果(x0,y0)方程的解,那么以(x0,y0)为坐标的点必在C1上。”显然,它满足刚才学生自己所提出的两个条件。(也就是抛物线上的点与方程的解形成了一一对应的关系。)

尽管学生知道了曲线和方程互相完整表示时所具有的这样两个关系,但学生此时可能还会存有这样的疑问:“曲线与方程互相完整表示时一定要满足这样两个关系吗?缺少一个会怎样呢?”学生的这一疑问也正是本节课的教学难点所在。为了突破这一难点,我在例1的基础上分别构造出两个反例,一个是在原有抛物线上“长出”一部分,即“曲线多了”的情形,另一个是将原来的抛物线“剪去”一段,即“曲线少了”的情形。接着在教师的引导下,让学生分别对两个反例进行充分地观察、分析、讨论(当然,这里要给学生留足时间)。通过这些认知活动的开展,学生能够发现:问题1中(反例1),虽然以方程的解为坐标的点都在曲线C2上,但曲线C2上的点的坐标不全满足方程(可举例验证),也就是C2上“混进”了其坐标不是方程解的点,从而导致曲线C2上的点和方程解不是一一对应的关系,它们不能互相完整地表示,即“曲线多了”。此时,它满足同学自己提出的“两个关系”中②不满足①。问题2(反例2)中,曲线C3上的点的坐标都满足方程,但以方程的解为坐标的点不全在曲线C3上(也可举例说明),也就是曲线上“缺漏”其坐标是方程解的点,同样导致曲线C3上的点与方程的解也不是一一对应的关系。显然曲线C3与方程不能互相完整地表示,即“曲线少了”。此时,它满足“两个关系”中的①不满足②。由此,学生可以得出结论:“两个关系”中缺少任何一个,曲线和方程都不能互相完整地表示。这样就使本节课的教学难点被突破了。这里对反例的设置是在例1的基础上进行演化的,没有另外构造反例,目的是让学生能更好地进行正反对比,从而易于发现问题,形成深刻的印象。这一环节的教学是在教师的引导下采用研讨的方式进行的,这样处理有助于调动学生学习积极性,增强课堂参与意识,培养学生的观察能力和逻辑思维能力。(本环节用时约分钟)

通过上一环节的实例探究和反例分析,实际上已经揭示了曲线和方程对应关系的本质属性,但学生对此还缺乏一种逻辑上的准确表述。因此,接下来就是引导学生在刚才的探讨基础上“归纳定义”。首先向学生提出这样的问题:如果将例1中能完整表示曲线的这个方程称为“曲线的方程”,那么我们该如何定义“曲线的方程”?这时可引导学生思考:为了避免两个反例中曲线与方程关系的“不完整性”,我们应该作出怎样的限制?随着这一问题的解答,自然也就得出了定义。事实上,这一环节是在暴露定义产生的过程,目的是让学生从中学到处理数学问题的思想和方法,培养学生的数学素质。另外,在归纳出定义后,又引导学生用集合对定义进行重新表述,这样可以使学生对曲线与方程的关系进行再认识,从而强化对概念的理解。(本环节用时约分钟)

接下来,我给学生准备了一道练习题,通过练习一方面可以加深学生对定义的理解;另一方面也旨在了解学生对概念的掌握情况,以便调节后面的教学节奏。同时,通过两个引申提问(一个是怎样修改图形,可使曲线是方程的曲线,另一个是如何修改方程可使方程是曲线的方程。),对题目作进一步的探讨。这样有利于培养学生的发散思维,促使良好思维习惯的形成。(练习用时约分钟)

处理完练习以后,又引导学生对概念进行初步运用(目的还是为了加强对概念的理解)。首先我将例2、例3分别投影在屏幕上,然后引导学生分析解题思路,并根据学生的分析进行补充讲解,最后师生共同完成解答。对例3的证明在理清思路后,由我将证明过程板书出来,目的是给学生起一个示范作用,让学生掌握正确的书写格式,培养学生严谨推理的习惯。另外,在解完例题之后,又引导学生对解题过程进行回顾,并归纳出具有一般性的结论,这样既有利于解题技能的形成,又可培养学生良好的解题习惯。(本环节用时约分钟)

课堂小结我是引导学生从知识内容和思想方法两个方面进行小结的。通过小结使学生对本节课的知识结构有一个清晰的认识。在小结时不仅概括所学知识,而且还对所用到的数学方法和涉及的数学思想也进行归纳,这样既可以使学生完成知识建构,又可以培养其能力。(用时约分钟)

最后布置作业。所布置的作业都是紧紧围绕着“曲线和方程”的概念及运用。通过作业来反馈知识掌握效果,巩固所学知识,强化基本技能的训练,培养学生良好的学习习惯和品质。另外,设计选作题是为了给学有余力的学生留出自由发展的空间。(用时约分钟)

五、书设计

我将板书设计为“提纲式”。这样设计主要是力求重点突出,能加深学生对重点知识的理解和掌握,便于记忆,从而提高教学效果。

六、价

在授课过程中,我根据学生对课堂提问及例习题的解答情况,及时调节课堂节奏,“易”则可加快,“难”则应放慢速度,并借用富有启发性的、阶梯性的提问对学生进行思维引导。

课后,我将通过统计《课堂练习反馈表》、批改作业以及与学生谈话等方式,来了解学生对“曲线与方程”概念的掌握情况,检查教学目的的实现程度。同时,根据收集的这些教学反馈信息来对下一步教学工作作出必要的调整和改进。另外,通过对作业的评判和统计课堂练习完成情况,有助于学生认识自我,让他们获得成就感,从而增强其自信心,培养学生积极进取的学习态度。

以上,我从六个方面阐述了对“曲线和方程”这一节内容的有关分析和教学设想。不妥之处,敬请各位专家、同仁指正。谢谢大家!

篇2:《曲线和方程》说课稿

《曲线和方程》说课稿模板

一、教材分析

1.教材背景

作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.

本课为第二课时

主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.

2.本课地位和作用

承前启后,数形结合

曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.

“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.

后继性、可探究性

求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.

同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.

数学建模与示范性作用

曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.

数学的文化价值

解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.

3.学情分析

我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.

二、目标分析

1.教学目标

知识技能目标

理解坐标法的作用及意义.

掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.

过程性目标

通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.

通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.

通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.

情感、态度与价值观目标

通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的"喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.

展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.

2.教学重点和难点

重点:求曲线方程的方法、步骤

难点:几何条件的代数化

依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.

曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.

三、教学方法及教材处理

1.教学方法:探究发现教学法.

遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.

2.学法指导

学生学法:互相讨论、探索发现

由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.

这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.

篇3:《曲线和方程》数学说课稿

《曲线和方程》数学说课稿

一、教材分析

教材的地位和作用

“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!

根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。

二、教学目标

根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:

知识目标:

1、了解曲线上的点与方程的解之间的一一对应关系;

2、初步领会“曲线的方程”与“方程的曲线”的概念;

3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;

4、强化“形”与“数”一致并相互转化的思想方法。

能力目标:

1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;

2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;

3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。

情感目标:

1、通过概念的引入,让学生感受从特殊到一般的认知规律;

2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。

三、重难点突破

“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。

怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的.方程。通过这些例题让学生再一次体会“二者”缺一不可。

四、学情分析

此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。

篇4:《曲线与方程》说课稿

《曲线与方程》最新说课稿

一、教材内容分析

“曲线与方程”这节课是一节承上启下的内容,既对必修2中解析几何初步学习进行了延伸,又为后面学习圆锥曲线做好了铺垫。

二、学情分析

学生在必修2中已经学过直线和圆的方程,体会到了解析几何的基本方法——坐标法的好处。但没有从理论的角度探索曲线与方程的关系,表现在求解一些轨迹问题或曲线方程的时候常常出现范围错误的现象。

三、教学重点、难点

重点:曲线的方程和方程的曲线的定义。

难点:运用定义验证曲线是方程的曲线,方程是曲线的方程。

四、教学目标

1.知识与技能:知道曲线的方程和方程的曲线的定义。给出一些熟悉的曲线的部分图象后能确定变量的取值范围。能够根据所给的方程画出相应的图形。

2.过程与方法:让学生参与教学的全过程,通过对定义的总结与应用,进一步体会数形结合的思想方法。

3.情感态度与价值观:通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受学习的乐趣,提高学生的兴趣,增强学生的信心。

五、教学方法

课堂教学中坚持以学生为主体,教师为主导,思维训练为主线,能力培养为主攻的原则。我采用引导发现、问题引领等方法。

六、媒体资源选用

采用多媒体辅助教学,PPT制作课件,利用天宫一号的视频来让学生初步体会曲线与方程的关系。

七、教学流程

为突出重点,突破难点,完成教学目标,我设计的.教学流程如下:

首先利用天宫一号的目标飞行器成功发射的模拟动画,使学生初步体会曲线上的点与方程的解是一一对应的关系,同时体会数学的应用价值。

我引导学生尝试用自己的语言归纳什幺叫曲线的方程,什幺叫方程的曲线,在学生自我归纳的基础上,教师给出标准的定义将其感性认识理性化。

为了帮助学生理解定义,我又从集合、充要条件两个不同角度进行剖析,也为后面解决问题做好了铺垫。

为了检测学生对定义的理解和应用,在习题配备上,我采用了二、二、三的结构。

首先给出两组练习,并设置问题。接着设置两道例题,让学生掌握利用定义判断及证明方程为曲线的方程。通过师生互动完成例题的证明过程,进一步加深学生对定义的理解,培养学生书面表达的严谨和简洁。

最后,让学生归纳、总结出本节课所学的主要内容,老师作适当点拨引导,培养学生的概括能力、表达能力和自我获取知识的能力,并布置课后作业。

八、教学评价

教学过程中适时地进行生生互评、师生互评。在课堂联系阶段利用投影仪展示学生的作业,做到现做现评。

篇5:椭圆及其标准方程第一课时说课稿

一、教材分析

1、教材的地位及作用

圆锥曲线是高考重点考查内容。“椭圆及其标准方程”是《圆锥曲线与方程》第一节内容,是继学习圆以后运用 “曲线和方程”理论解决具体的二次曲线的又一实例。

从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;

从方法上说,它为后面研究双曲线、抛物线提供了基本模式;

所以,无论从教材内容,还是从教学方法上都起着承上启下的作用,它是学好本章内容的关键。因此搞好这一节的教学,具有非常重要的意义。

2、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。

(2)、能力目标:让学生通过自我探究、合作学习等,提高学生实际动手、合作学习以及运用知识解决实际问题的能力。

(3)、情感目标:在教学中充分揭示“数”与“形”的内在联系,体会数与形的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于钻研的精神。

3、教学重点、难点

教学重点:椭圆的定义及椭圆的标准方程。

教学难点:椭圆标准方程的建立和推导。

在学习本课前,学生已学习了直线与圆的方程,对曲线和方程的`概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。但由于学生学习解析几何时间还不长、学习程度也较浅,对坐标法解决几何问题掌握还不够。另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。

据以上对教材及学情的分析,确定椭圆的定义及其标准方程为本课的教学重点;椭圆标准方程的推导为本课的难点。

4、教材处理

根据新课程大纲要求,本节课的内容特点以及结合我班学生的实际情况,我把本节内容分2个课时进行教学。

第一课时,主要研究椭圆的定义、标准方程的推导。

第二课时,运用椭圆的定义求曲线的轨迹方程。

二、教学方法和教学手段

课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标 ,我采用如下的教学方法和手段:

教学方法:我采用的是引导发现法、探索讨论法等。

1、引导发现法:用动画演示动点的轨迹,启发学生归纳、概括椭圆定义。

2、探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;

有利于突出重点,突破难点,发挥其创造性。

引导发现法和探索讨论法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性。

教学手段:利用多媒体课件教学,化抽象为具体,降底学生学习难度,增强动感及直观感,增大教学容量,提高教学质量。

三、学法指导

“授人以鱼,不如授人以渔。”

教会学生:

1、动手尝试。

2、仔细观察。

3分析讨论。

4、抽象出概念,推出方程。

这样有利于学生发挥学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。

四、教学过程

教学流程设计:认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用→本课小结→作业布置

五、教学评价

1、这节课围绕“认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用”这一主线展开。

2、教学中学生通过观看动画、动手实践,自己总结出椭圆定义,符合从感性上升为理性的认识规律。

3、在整个教学过程中,采用引导发现法、探索讨论法等教学方法,注重数形结合等数学思想的渗透。培养学生勇于探索、勇于创新的精神。

篇6:《椭圆标准方程》高中数学说课稿

一、教材分析

1、地位及作用

圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。

推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,为学习双曲线、抛物线内容提供了基本模式和理论基础。因此本节课具有承前启后的作用,是本章的重点内容。

2、教学内容与教材处理

椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我将以课堂教学的组织者、引导者、合作者的身份,组织学生动手实验、归纳猜想、推理验证,引导学生逐个突破难点,自主完成问题,使学生通过各种数学活动,掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

3、教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

1、知识目标

①建立直角坐标系,根据椭圆的定义建立椭圆的标准方程;

②能根据已知条件求椭圆的标准方程;

③进一步感受曲线方程的概念,了解建立曲线方程的基本方法,体会数形结合的数学思想。

2、能力目标

①让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力;

②培养学生的观察能力、归纳能力、探索发现能力;

③提高运用坐标法解决几何问题的能力及运算能力。

3、情感目标

①亲身经历椭圆标准方程的获得过程,感受数学美的熏陶;

②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨;

③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

4、重点难点

基于以上分析,我将本课的教学重点、难点确定为:

①重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法;

②难点:椭圆的标准方程的推导。

二、教法设计

在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。

三、学法设计

通过创设情境,充分调动学生已有的学习经验,让学生经历“观察――猜想――证明――应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

四、学情分析

1、能力分析

①学生已初步掌握用坐标法研究直线和圆的方程;

②对含有两个根式方程的化简能力薄弱。

2、认知分析

①学生已初步熟悉求曲线方程的基本步骤;

②学生已经掌握直线和圆的方程及圆锥曲线的概念,对曲线的方程的概念有一定的了解;

③学生已经初步掌握研究直线和圆的基本方法。

3、情感分析

学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。

五、教学程序

从建构主义的角度来看,数学学习是指学生自己建构数学知识的活动,在数学活动过程中,学生与教材及教师产生交互作用,形成了数学知识、技能和能力,发展了情感态度和思维品质。基于这一理论,我把这一节课的教学程序分成六个步骤来进行,下面我向各位作详细说明:

篇7:《椭圆标准方程》高中数学说课稿

一、教学目标

(1)知识与能力目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推

导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

(2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探

索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

(3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

二、教学重点、难点

(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

(2)教学难点:椭圆标准方程的建立和推导。

三、教学过程

(一)创设情境,引入概念

1、动画演示,描绘出椭圆轨迹图形。

2、实验演示。

思考:椭圆是满足什么条件的点的轨迹呢?

(二)实验探究,形成概念

1、动手实验:学生分组动手画出椭圆。

实验探究:

保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

2、概括椭圆定义

引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

思考:焦点为的椭圆上任一点M,有什么性质?

令椭圆上任一点M,则有

(三)研讨探究,推导方程

1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

2、研讨探究

问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有

,尝试推导椭圆的方程。

思考:如何建立坐标系,使求出的方程更为简单?

将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

篇8:《椭圆标准方程》高中数学说课稿

按方案一建立坐标系,师生研讨探究得到椭圆标准方程

=1,其中b2=a2-c2(b>0);

选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b>0)。

教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

(四)归纳概括,方程特征

1、观察椭圆图形及其标准方程,师生共同总结归纳

(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

(3)椭圆标准方程中三个参数a,b,c关系:;

(4)椭圆焦点的位置由标准方程中分母的大小确定;

(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

2、在归纳总结的基础上,填下表

标准方程

图形a,b,c关系焦点坐标焦点位置

在x轴上

在y轴上

(五)例题研讨,变式精析

例1、求适合下列条件的椭圆的标准方程

(1)两个焦点的坐标分别是,椭圆上一点P到两焦点距离和等于10。

(2)两焦点坐标分别是,并且椭圆经过点。

例2、(1)若椭圆标准方程为及焦点坐标。

(2)若椭圆经过两点求椭圆标准方程。

(3)若椭圆的一个焦点是,则k的值为。

(A)(B)8(C)(D)32

例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段,求线段中点M的轨迹。

(六)变式训练,探索创新

1、写出适合下列条件的椭圆标准方程

(1),焦点在x轴上;

(2)焦点在x轴上,焦距等于4,并且经过点P;

2、若方程表示焦点在y轴上的椭圆,则k的范围。

3、已知B,C是两个定点,周长为16,求顶点A的轨迹方程。

4、已知椭圆的焦距相等,求实数m的值。

5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

6、已知P是椭圆上一点,其中为其焦点且,求三解形面积。

(七)小结归纳,提高认识

师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

(八)作业训练,巩固提高

课本第96页习题§8。1第3题、第5题、第6题。

课后思考题:

1、知是椭圆的两个焦点,AB是过的弦,则周长是。

(A)2a(B)4a(C)8a(D)2a2b

2、的两个顶点A,B的坐标分别是边AC,BC所在直线的斜

率之积等于,求顶点C的轨迹方程。

2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

教学设计说明

椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

篇9:《椭圆标准方程》高中数学说课稿

一、教学目标:

知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。

二、教学重点、难点:

重点是椭圆的定义及标准方程,难点是推导椭圆的.标准方程。

三、教学过程:

教学环节

教学内容和形式

设计意图

复习

提问:

(1)圆的定义是什么?圆的标准方程的形式怎样?

(2)如何推导圆的标准方程呢?

激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。

讲授新课

一、授新

1.椭圆的定义:(略)

活动过程:

操作-----交流-----归纳-----多媒体演示-----联系生活

形成概念:

操作:

<1>固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?

<2>如果调整、的相对位置,细绳的长度不变,猜想你的椭圆会发生怎样的变化?

在动手过程中,培养学生观察、辨析、归纳问题的能力。

在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。

教学环节

深化概念:

注:1、平面内。

2、若,则点P的轨迹为椭圆。

若,则点P的轨迹为线段。

若,则点P的轨迹不存在。

联系生活:

情境1.生活中,你见过哪些类似椭圆的图形或物体?

情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)

情境3.观看天体运行的轨道图片。

教学内容和形式:

准确理解椭圆的定义。

渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。

设计意图:

2.椭圆的标准方程:

例:已知点、为椭圆的两个焦点,P为椭圆上的任意一点,且,其中,求椭圆的方程

活动过程:点拨-----板演-----点评

一般步骤:

(1)建系设点

(2)写出点的集合

(3)写出代数方程

(4)化简方程:

<1>请一位基础较好,书写规范的同学板演。

<2>教师在巡视过程中及时发现问题给予点拨。

(5)证明:讨论推导的等价性

掌握椭圆标准方程及推导方法。

培养学生战胜困难的意志品质并感受数学的简洁美、对称美。

养成学生扎实严谨的科学态度。

应用

举例

教学环节

二、应用

例1.(1)椭圆的焦点坐标为:

(2)椭圆的焦距为4,则m的值为:

活动过程:思考-----解答-----点评

例2.已知椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离的和等于10,求椭圆的标准方程

活动过程:思考-----解答-----点评

变式<1>已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。

活动过程:思考-----板演(对比)-----点评

教学内容和形式:

明确椭圆两种形式的标准方程。

运用椭圆的定义,掌握椭圆的标准方程。

运用椭圆的定义或待定系数法求椭圆的标准方程。

设计意图:

变式<2>已知椭圆经过点、,

求椭圆的标准方程

活动过程:思考-----解答-----点评

认清椭圆两种标准方程形式上的特征。

课堂小结:

提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?

活动过程:教师提问-----学生小结-----师生补充完善。

让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。

作业布置:

作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、

探索:平面内到两个定点的距离差、积、商为定值的点的轨迹是否存在?若存在轨迹是什么?

分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。

四、板书设计

8.1椭圆及其标准方程

一、复习引入二、新课讲解三、习题研讨

1.椭圆的定义

2.椭圆的标准方程

总体说明:本节课的设计力图贯彻“以人的发展为本”的教育理念,体现“教师为主导,学生为主体”的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学生的思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的综合素质。

篇10:第一单元《方程》第三课时

教学内容:教科书第6页练习一的第7~12题。教学目标:1、通过练习,使学生进一步体会方程的意义及等式的性质。2、通过练习,使学生能根据等式的性质,正确地解方程及检验。3、使学生在学生与探索的过程中进一步培养独立思考、主动与他人合作交流、自动检验等习惯,并获得成功的体验,树立进一步学好数学的信心。教学过程:一、基础知识1、说出下面的式子哪些是方程,哪些不是,为什么?18+17=35 12-a=4 x+12=3845-x<30 x=14+28 45-13=x+162、当x=18时,是下面哪几个方程的解。18+x=18 18-x=0 x+15=33x-10=8 x-18=18 x+3=18+3说说自己的思考方法。二、指导练习1、完成练习一第7题。(1)学生独立完成计算。(2)这里的方程与前面所学解方程的过程比较有什么不同?省略了什么?这样写有什么优点?在解方程时,先在头脑中想好方程两边应同时加上或减去什么数,但书写时可以省略。同学们在解方程时可以照这种方法解。2、完成练习第8题。(1)学生独立完成,要按照上一题的方法适当省略,简化过程。(2)集体核对,说说自己的解题思路。3、完成练习一第9题。知道每题错在哪里吗?错误的原因是什么?应该怎样改正呢?独立完成改错。4、完成练习一第10题。(1)学生独立完成。(2)在小组中交流,每人选择一题说思考方法。(3)错误汇报。说说错误的原因与正确方法。5、完成练习一第11题。根据图意怎样列方程?(x+10=50+20)应该先算哪一步?方程右边两个数可以相加,应该先加起来。第2题怎样列方程?独立完成解答,集体核对。6、完成练习一第12题。“两人用去的钱同样多”什么意思?你能用一种方法来表示题中的相等关系吗?(1本练习本+3枝铅笔=7枝铅笔)你看出了什么?(1本练习本相当于4枝铅笔)三、课堂总结通过本节课的练习,你有什么收获?你认为解决数学问题时,方程用处大吗?

篇11:高中数学复习讲座 曲线的轨迹方程的求法

高中数学专题复习讲座 曲线的轨迹方程的求法

高考要求

求曲线的轨迹方程是解析几何的两个基本问题之一   求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系   这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点

重难点归纳

求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法

(1)直接法  直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程

(2)定义法  若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求

(3)相关点法  根据相关点所满足的方程,通过转换而求动点的轨迹方程

(4)参数法  若动点的坐标(x,y)中的x,y分别随另一变量的.变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程

求轨迹方程,一定要注意轨迹的纯粹性和完备性   要注意区别“轨迹”与“轨迹方程”是两个不同的概念

典型题例示范讲解

例1如图所示,已知P(4,0)是圆x2+y2=36内的一

点,A、B是圆上两动点,且满足∠APB=90°,求

矩形APBQ的顶点Q的轨迹方程

命题意图

篇12:高中数学优秀说课稿

一、学习目标

1.知识目标:研究曲线的切线,从几何学的角度了解导数概念的背景,明确瞬时变化率就是导数,掌握求曲线切线斜率的一般方法。

2.能力目标:通过嫦娥一号绕月探测卫星变轨瞬间的瞬时速度和运动的方向为背景,从极限入手,培养学生的创新意识和数形转化能力。

3.情感目标:通过运动的观点,体会曲线切线的内涵,挖掘数形关系,激发学生学习数学的热情。

二、教学重点

曲线切线的概念形成,导数公式的理解和运用。

三、教学难点

理解曲线切线的形成是通过逼近的方法得出的。引导学生在平均变化率的基础上探求瞬时变化率。

四、教学过程

1.新课引入,创设情景

①(大屏幕显示)嫦娥一号绕月探测卫星运行轨迹以及四次变轨的全过程。

②讨论问题:()卫星在每次变轨的瞬间不仅有瞬时速度,而且要研究它运动的方向。引出本节课主要研究的课题――曲线的切线。

2.概念形成,提出问题

①(大屏幕显示)分析卫星在变轨瞬间与变轨前的位置关系,引出曲线的割线。

②由运动的观点、极限的思想,归纳出曲线切线的概念。以及求曲线切线斜率的一种方法。

3.转换角度,分析问题

①引入增量的概念,在曲线C上取P(x0、y0)及邻近的一点Q(x0+△x,y0+△y),过P、Q两点作割线,分别过P、Q作y轴,x轴的垂线相交于点M,设割线PQ的倾斜角β, .

②割线斜率用增量表示的形式不变。(大屏幕显示) 改变P的邻近点Q的位置、曲线的类型、倾斜角的性质,发现tanβ 表示的形式始终不变。左、右邻近点的讨论,为下面说明极限的存在做准备。

4.归纳总结,解决问题

①(大屏幕显示)由于△x可正可负,

但△x≠0,研究△x无限趋近于0,

用极限的观点导出曲线切线的斜率。

②讨论问题:引导学生将这一运动过程        转化为已学的代数问题。

k==

点评公式,重点强调平均变化率和瞬时变化率之间的关系,提出导数。同时引导学生归纳出求曲线切线斜率的一般方法和步骤

5.例题剖析,深化问题

例:曲线的方程f(x)=x2+1  求此曲线在点P(1,2)处的切线的方程

6.学生演板,落实问题

①已知曲线y=2x2上一点A(1,2),求

(1)点A处的切线的斜率;

(2)点A处的切线的方程。

②求曲线y=x2+1在点P(-2,5)处的切线方程。

7.课堂小结

8.作业

P125  第6、7、8、9题

篇13:高中数学说课稿《椭圆的标准方程》

高中数学说课稿《椭圆的标准方程》

一、说教材:

1. 地位及作用:

“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。

2. 教学目标:

根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:

(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。

(2)能力目标:

(a)培养学生灵活应用知识的能力。

(b) 培养学生全面分析问题和解决问题的能力。

(c)培养学生快速准确的运算能力。

(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。

3. 重点、难点和关键点:

因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的"两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。

二、说教材处理

为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:

1.学生状况分析及对策:

2.教材内容的组织和安排:

本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:

(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业

三、说教法和学法

1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。

2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。

四、教学过程

教学环节

3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。

例1属基础,主要反馈学生掌握基本知识的程度。

例2可强化基本技能训练和基本知识的灵活运用。

小结

为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。

1.椭圆的定义和标准方程及其应用。

2.椭圆标准方程中a,b,c诸关系。

3.求椭圆方程常用方法和基本思路。

通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。

布置作业

(1) 77页——78页 1,2,3,79页 11

(2) 预习下节内容

巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。

篇14:高中数学《圆的标准方程》说课稿

一、说教学背景

1、教材结构分析

《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。

2、学情分析

圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

3、教学目标

(1) 知识目标:

①掌握圆的标准方程;

②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

③利用圆的标准方程解决简单的实际问题。

(2) 能力目标:

①进一步培养学生用代数方法研究几何问题的能力;

②加深对数形结合思想的理解和加强对待定系数法的运用;

③增强学生用数学的意识。

(3) 情感目标:

①培养学生主动探究知识、合作交流的意识;

②在体验数学美的过程中激发学生的学习兴趣。

根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

4、教学重点与难点

(1)重点:圆的标准方程的求法及其应用。

(2)难点:

①会根据不同的已知条件求圆的标准方程;

②选择恰当的坐标系解决与圆有关的实际问题。

为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

二、教法学法分析

1、教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。

2、学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。

下面我就对具体的教学过程和设计加以说明:

三、教学过程与设计

整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

创设情境

启迪思维

深入探究

获得新知

应用举例

巩固提高

下面我从纵横两方面叙述我的教学程序与设计意图。

首先:纵向叙述教学过程

(一)创设情境——启迪思维

问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。

通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。

(二)深入探究——获得新知

问题二

1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

2、如果圆心在,半径为时又如何呢?

这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。

得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。

(三)应用举例——巩固提高

I、直接应用 内化新知

问题三

1、写出下列各圆的标准方程:

(1)圆心在原点,半径为3;

(2)经过点,圆心在点。

2、写出圆的圆心坐标和半径。

我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

II、灵活应用 提升能力

问题四

1、求以点为圆心,并且和直线相切的圆的方程。

2、求过点,圆心在直线上且与轴相切的圆的方程。

3、已知圆的方程为,求过圆上一点的切线方程。

你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是什么?

我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的.发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。

III、实际应用 回归自然

问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。

我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。

(四)反馈训练——形成方法

问题六

1、求过原点和点,且圆心在直线上的圆的标准方程。

2、求圆过点的切线方程。

3、求圆过点的切线方程。

接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。

(五)小结反思——拓展引申

1、课堂小结

把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法

①圆心为,半径为r 的圆的标准方程为:

圆心在原点时,半径为r 的圆的标准方程为:。

②已知圆的方程是,经过圆上一点的切线的方程是:。

2、分层作业

(A)巩固型作业:教材P81-82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。

3、激发新疑

问题七

1、把圆的标准方程展开后是什么形式?

2、方程表示什么图形?

在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。

以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:

横向阐述教学设计

(一)突出重点 抓住关键 突破难点

求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。

第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。

(二)学生主体 教师主导 探究主线

本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。

(三)培养思维 提升能力 激励创新

为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。

以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。

篇15:《九九歌》第一课时说课稿

《九九歌》第一课时说课稿

一、教材分析:

《九九歌》这篇课文是吉林省新遍教材小学语文一年级上册中的11课中的第二课。

《九九歌》是农谚之一,历代流传,是我国劳动人民生活经验的结晶。课文图文并茂,情景交融,具体描绘了“一九”至“四九”,小朋友在冰天雪地中嬉戏玩耍和“五九”至“八九”气候逐渐转暖,柳绿、冰消、雁来以及“九九”过后大自然的壮观景色,书中六幅图色彩明丽,形象生动,便于学生观察和学习本文,让学生体会到千万年来,祖先们在这块大地上辛勤劳作,创造了灿烂的民族地地方文化,充分地显示出古代劳动人民的聪明才智。

二、教学目标:

1、感受农谚作为中华民族一种特有文化现象的魅力,吸收民族文化智慧。

2、掌握随图,随文识字的方法,掌握引读、接读、拍手读、看插图背等多种朗读和背诵的策略,在查资料、间又 的过程中增强语文实践能力。

3、会认7个生字,认识1个新笔画“竖弯”,学会写“四”、“六”这两个生字。

4、朗读课文,背诵课文。

三、教学重、难点:

1、教学重点:认识7个生字并正确书写“四、六”两个生字,掌握新的笔画。

2、教学难点:背诵谚语。

四、教学准备:

1、布置学生翻看日历或者询问爸爸妈妈,弄清“一九”“二九”……都是哪些天。

2、准备本课的生字词语卡片,放大的插图等用出示。

五、教学理念:

1、采用听读识字法进行教学。(以情境导入,在反复练习和教师指导的朗读过程在认识生字,并有效地解决低年级学生唱读课文的问题。)

2、积极倡导自主、合作的学习方式。(打破一贯从头到尾按顺序学习课文的传统,让学生自主选择喜欢的句子读,把要我读变成我要读、我想读、我爱读。)

3、充分开展探究活动。(努力开阔学生的思维,发挥想象,让学生感受自然美、生活美,感受农谚作为中华民族一种特有文化现象的魅力,为我们祖先的智慧所惊叹。

六、教学过程设计:

(一)、创设情境,激发兴趣。

好的开始,是成功的一半,创造好的教学情境,可以激发学生的学习兴趣,使学生能够积极思考、主动发言,于是开始我用出示一幅冬天图画,让学生欣赏优美的冬景图,同时提问:你觉得图上的景色怎么样?你知道冬季节气吗?这种情境的创设能让学生从直观上感受冬天的美丽,从而激发他们对冬季节气的探索和好奇心。

(二)品读课文,读中识字。

新课程改革提倡采用听读识字法进行教学,即让学生在听、说、读的过程中尽快的.认识并掌握生字,于是我相机让学生自渎课文,并采用四步读书法来引导他们:

1、初读:读准字音,感知内容即慢速地、大声地读。

2、再读:整体感知,加深印象即速度稍微加快读。

3、三读:圈圈划划,识记生字即把本课要求识记的生字划出来。

4、四读:试读课文,巩固生字即能够把课文较通顺、流畅地读出来。

经过以上几层层提高的办法就是学生对课文有了一定的了解,对生字也有了初步的印象,但是,低年级学生学得快,忘得也快,为了使他们进一步加深印象,我又为学生设计了一个有趣的“选水果认生字”的识字游戏即一种水果对应一个本课要求认识的生字,让学生找到他喜欢的水果,并快速地读出生字。(教师提问:同学们,这些水果后面都有秘密呦!你喜欢哪种水果呢?把后面的秘密弄明白,说对了,老师就把水果卡片送给你,如果说错了,你可以找好朋友帮助你解决这个问题。)在整个游戏中,给学生充分选择的时间和机会,让生字和他们一次次见面,使他们在快乐中识字、记字,这样就达到巩固识字的目标了。

(三)指导朗读,体会意义。

通过前面的自己练读过程,学生对课文已经比较熟练了。但是一年级学生唱读的现象是普遍存在的,怎样克服呢?在这里通过里领读、接读、拍手读、看插图背和自评、互评的方式来训练学生掌握朗读技巧。例如:在进行朗读训练时,教师提问:同学们,你认为他读的好吗?你读的怎么样?怎么读更好呢?让学生展开讨论,交流自己的看法,品读阶段往往需要教师的指导,在教师范读的基础上,有效的朗读方式是引读,在这里引读能起到画龙点睛的作用,领读过程中,保留了节奏美;接读时可以让学生上台做自己创造出来的动作,经过这样多方式的朗读指导,学生读起来就有声有色了,唱读的问题也就迎刃而解了。

(四)自主选择,开阔思维。

经过识记,练读,体会的过程,学生已经对课文朗朗上口了,怎样使他们对课文印象更深刻呢?于是,我打破一贯从头到尾讲读课文的教学传统,让学生自主地选择自己喜欢的句子来读,学生们很主动、很乐意的去选择,把要我读变成我要读、我想读、我爱读,提高了阅读质量。

在自主选择的同时,我安排了拓宽思维训练。例如:当学生选择“五九、六九,河边看柳”,这个句子时,教师提问:“五九”“六九”都是哪些天?气候发生了哪些变化?“河边看柳”是什么意思呢?让学生把自己亲身经历的或者是自己想到的都说出来,开阔了学生的思维,打破了课本的限制,然后在熟读的基础上,引导学生进行背诵,可以随图背诵,也可以选择喜欢的句子来背,看谁背课文又快又好,这样既完成了教学目标,又增长了知识,学生乐此不疲。

(五)巧识字形,学会生字。

在读中学生已多次感知了生字的音、形、义,但学生对生字的认识还是一种轮廓现象,尤其对一年级学生来说学会写字,对字形的分析必不可少。我在指导学生学会写字时,激励学生结合字形、字义。巧识巧记:学生会说“四”象窗户和窗帘;“六”象小孩坐在板凳上;还可以用数笔画的方法识记。学习新笔画“ ”,教师在虚字格在范写,“四”“六”强调在虚字格中的位置,及时进行点拨指导,加快学生识字的速度,激发学生学习的积极性。

(六)趣味作业,课外延伸。

在本课教学即将结束时,告诉学生,我国幅员辽阔,不同地域气候也不尽相同。《九九歌》中指出的天寒、冰冻、柳绿、冰消、雁来、春耕等现象主要针对华北黄河流域一带而言,有时我们查日历就会发现现实生活中的气候与《九九歌》中的描述的不一样。《九九歌》也因地而异,课后可以在爸爸妈妈的帮助下收集祖国各地《九九歌》的资料,体会不同地区不一样的泥土气息和甘醇如酒的亲情,也可以根据冬季节气的特征把春夏秋三季的特征,用书上的句式编一编,培养学生语文实践能力。

篇16:元素第一课时说课稿

各位评委、老师,大家上午好!

我说课的题目是人教版九年级化学第三单元物质构成的奥秘元素这一课题中的第一课时。

我说课内容分为以下五个部分

一、设计前的一些思考

元素概念是初中化学中的一个核心概念。新课标中要求:

认识物质的多样性;

认识氢、碳、氧、氮等与人类关系密切的常见元素;

能看懂某些商品标签上标示的组成元素及其含量;

知道同一元素的原子和离子可以相互转化;

形成‘化学变化过程中元素不变’的观念。

这一部分内容虽然学习要求不高,但在化学启蒙教育中却是不可或缺的。

本节课的设计应采取的是以学生为中心,强调“情境”对概念建构的重要作用,以“小组合作学习”的方式,通过分析、讨论建立元素概念,引导学生初步认识描述物质组成的方式,初步形成元素观。

第二,教学背景分析。首先是教学内分析:初中阶段素的教学主要分为3个课题展开,元素第一课时建立元素概念,第二课时认识元素符号和元素周期表,在水的组成这一课题中利用元素种类守恒确定化合或分解反应中物质的元素组成,最后在质量守恒定律中深入研究与应用元素守恒。

本课时以所学的元素化合物知识及化学反应为基础,结合微粒观,初步形成认识世界、认识物质的思想方法,既能促使学生对已学知识产生新的认识和整合,又为后续化学知识的学习打下基础。

第二、学生情况分析。已有知识技能。。。。障碍点。。。。发展点。。。。

第三、确定本课题的三维教学目标,其中教学重难点是知道元素含义,对物质的宏观组成与唯冠结构的认识统一起来。

第四、依据以上分析,我将本节课设计为三个环节,两条主线,活动线,知识线。

接下来我将着重介绍上课的三个环节。环节一,创设情境。首先从学生熟悉的生活情境中引入,情境一、根据不同比例调配三原色组成了五彩缤纷的颜色;情景二、6种基本笔画组成超过了8万个汉字 ,提出问题:组成物质的基本成分是什么?创设情境,吸引学生的注意力、激发学生学习化学的兴趣。

接下来通过老师对古代、近代组成物质基本成分发展过程的介绍,让学生感受到人类对物质组成认识的不断发展的曲折性以及科学家坚持不懈追求真理的精神。但同时明白那时的认识是模糊的,随着科学技术的发展,到了现代,人们对组成物质基本成分有了清晰正确的认识。

目前自然界中已知的几千万种物质是由100多种元素组成。通过观察生活中常见食品或补剂的标签找出元素,观察图表,得出空气、地壳中、生物细胞中含量最多的元素,设计意图。。。

环节二,微观探寻,建立概念。在这个环节我设计了一个探究活动,前半部分活动通过小组合作学习进行概括出元素概念,后半部分活动在老师引导下完成概念辨析。小组合作学习完成导学案元素概念这一部分1、2、3题,学生能说出表格中构成物质的分子名称,说出分子中的原子种类,有些学生还能用化学符号表示分子、原子,会根据元素周期表中的序号得出质子数,尝试概括出现代元素概念,元素是具有相同质子数的一类原子的总称。但是对于元素概念中质子数即核电荷数,还需要教师通过点拨进行补充。

接下来由学生观察导学案元素概念部分第二个表格,粒子两两比较,判断是否属于同种元素。完成表格内容后,有的学生得出元素种类由质子数决定,有些得出元素种类还可以由电子数得出,极少数同学得出元素种类由相对原子质量决定,教师举例帮助学生判断电子数和相对原子质量决定元素种类是错误的。于是分析得出探寻微观世界,进行比较归类,通过质子数的变化引起了元素的种类变化的事实,渗透量变引起质变的辩证唯物主义观点。适当的运用评价机制,在回答问题时,对学生打分,可以提高学生参与课堂活动的积极性。

环节三 以三个问题为主线,进行学生活动.问题1:既然元素是质子数相同的一类原子的总称。那么元素和原子这两个概念有什么区别呢?请你对比原子的特点,对应说说元素不同之处。学生能回答出元素是原子的"总称,但元素只论种类不论个数、宏观上物质由元素组成的关键词,还需要教师引导,通过对元素和原子的关系与一片森林和一棵树的关系进行类比,让学生体会元素是宏观概念,说种类和组成。通过对已学概念进行分析和比较,学会正确使用元素、原子的概念。

问题2

教师提问:你能不能说说物质、元素、分子、原子、离子这些概念的关系呢?完成学案(四) 请学生在白板上展示讲解。将物质的宏观组成和微观构成的认识统一起来

接下来小组合作学习学案(五)议一议常见物质的宏观组成和微观构成。小组合作学习后,展示交流。针对学生容易出现的问题:元素说个数,宏观微观交叉描述,粒子数量关系对应错误,进行巩固练习,判断下列说法是否正确并改正,强调宏观微观的层次描述物质、粒子数量上的前后对应。

问题3.用生动趣味的语言[“元”来还“素”你]引起学生注意,激发探究欲望,探寻微观世界中水通电分解的微观模型,教师引导学生从化学变化的微观实质,到化学反应前后原子种类不变,得出元素种类也不变的结论。

设计意图

针对化学反应前后元素种类不变,设计问题链,首先让学生说说水、过氧化氢、氧气、二氧化碳之间的转化关系,体会变化中的元素种类守恒,然后让学生应用元素守恒思想解决3个难度依次升高的化学问题。设计意图?以上就是我上课的三个环节。

篇17:《草原》第一课时说课稿

一、说教材

著名文学家老舍先生五十年代第一次访问内蒙古,写下了《内蒙风光》,本文就节选自《内蒙风光》。

《草原》是人教版小学语文五年级下册第一组的一篇精读课文。文章记叙了作者到初到内蒙古大草原时的所见、所闻、所感,并通过这些所见、所闻、所感,赞美了草原的美丽风光和民族之间的团结。本文作为“走进西部”的第一篇课文,目的一是引导学生感受草原风光与民族风情,体会作者对草原的热爱和对民族团结的赞颂之情;二是在阅读中体会表达上的一些特点,并积累语言。本节课重点突破文章的第一部分,感受草原的风光美,领悟表达方式。

二、说学情

五年级的学生已经具备了初步的阅读能力,能明白本文的表达顺序是从作者进入草原后所经历的事情来记叙的。对于把握课文的故事梗概和重点词句,需要教师加以引导。

三、说教学目标

新课标指出:“语文是最重要的交际工具,是人类文化的重要组成部分。工具性与人文性的统一,是语文课程的基本特点。”针对这一特点再结合上述我对教材和学情的分析,本课的教学目标,我将从知识与技能、过程与方法、情感态度与体验三个方面进行设计。三者相互渗透融为一体。

1.知识与技能:

1)学习生字,正确读写并理解“渲染、勾勒、翠色欲流、一碧千里”等词语。

2)正确、流利、有感情地朗读课文,并背诵一、二自然段。

3)感受内蒙古大草原美好的风光及风土人情,体会蒙汉两族人民之间的深厚情谊。

4)揣摩优美语句,体会课文表达上的特点,学习作者抒发情感的方法。

2.过程与方法:

以读为主,在多种形式的读中,展开想像,理解课文内容,从而体会课文所表达的思想感情。

3.情感与体验:

读懂课文第一段,在草原自然美的熏陶感染下,培养学生热爱祖国美好风光的兴趣。

四、说教学重点、难点

基于以上认识,我确定的教学重点是引导学生随着作家的叙述,展开丰富的想象,并通过多层次的朗读,感受草原风光的美好。

而对于大多数生长于南方的孩子,草原是遥远、陌生的,因此,如何让学生突破时空障碍,与文本对话,引导学生揣摩优美的语句,体会作者的感情,领悟课文表达上的特点,就成了这篇文章的教学难点。

五、说教法

新课标指出“阅读是学生个性化的行为”“要珍视学生独特感受、体验和理解。”为在教学中为体现学生的主体地位,我将采取我将采取情境教学法和诵读法进行教学:

1、情境教学法,在教学过程中,我将会充分的利用多媒体课件向学生展示草原美丽景观的图片,创设情境,唤起学生对的美的渴望和追求,拓宽学生的思维,让他们更深层次的体味美的意境.

2、诵读法,在教学过程中,我将引导学生反复诵读课文,以读促学,让学生在多种形式的朗读中读出情感,读出感悟,读出内涵。

六、说学法

叶圣陶先生曾经说过:“教是为了达到不教”,因此在本课的教学中,我会放手让学生采用“读文、画句、想象、讨论” 相结合的学习方法,把听,说,读,写相结合,以读为主,让学生边读边想,不断通过读去揣摩和体会文中的思想感情,最终水到渠成,轻松突破本课的重、难点。为了更好的实施上述教法、学法,本节课我将采用传统的黑板教学结合现代化的多媒体教学进行。本节课为第一课时的说课内容。

七、说教学过程

本篇课文篇幅较长,我预设用以下几个环节,进行长文短教,展开我这节课的教学内容

(一)创设情境,激趣导入

兴趣是最好的老师,小学生的情感极易受到外在环境和他人的.情感的影响而产生共鸣,基于这一点,开课之初,我用多媒体展播配有画面的歌曲《美丽的草原我的家》,教师在优美的乐曲中导入:同学们,这首歌唱的是什么地方?是美丽的草原,今天,就让我们约上著名的作家老舍一同去领略草原美丽迷人的风光,感受蒙古族同胞的民族风情吧。

这样用音乐、图像渲染的情境,能带给学生强烈的情感体验,使学生“入其境,爱其美”,在感到喜悦、快乐的同时,让学生谈谈自己欣赏后的感受。此时,他们强烈的求知欲也就油然而生。于是顺势揭开课题,进入第二环节。

(二)初读感知,理清脉络

1. 快速默读课文,边读边提示学生圈出生字词,师生共同扫除阅读障碍

2、是由师生配乐朗读课文,思考课文写作顺序,主要是从哪两部分来写草原的?即“风光美”和“人情美”。学生对于课文有了一个整体的感知,为后面的品读词句做好铺垫。

(三)朗读品句,感受景美

课文的第一自然段可谓描绘草原美景的经典之作。我让学生四人小组自读第一自然段课文,一边读一边想象草原的美景,并把自己最喜爱的语句多读几遍,并在感受最深的地方做上记号。再交流品读。在品读重点语句时,我将引导学生一边想象画面,一边反复朗读;并借助多媒体展示草原图片,让学生图文结合地品味词句。

1. “那些小丘的线条是那么柔美,就像只用绿色渲染,不用墨线勾勒的中国画那样,到处翠色欲流,轻轻流入云际。”

抓住重点词“翠色欲流”,让学生感受到草原的辽阔碧绿。

2. “四面都有小丘,平地是绿的,小丘也是绿的。羊群一会儿上了小丘,一会儿又下来,走在哪里都像给无边的绿毯绣上了白色的大花。”

抓住重点字“绣”,理解想象。

在学生反复品读这些精美语句中,我还将不断回扣本段的中心句“在天底下,一碧千里,而并不茫茫。”抓住“一碧千里”一词,引导学生想象、感悟。相信作者对草原深深的热爱之情也将在学生内心一次次升华。

设计意图:阅读教学既要体会课文情感,又要落实语言训练,因此在学生理解感悟的同时,适时指导学生有感情的读,引导学生理解句子、比较句子。让学生在实实在在中积累语言,培养语感。

为了让学生进一步感受到老舍笔下的草原那如诗如画的意境,品读之后,我借助多媒体向学生再次展现一组配乐草原风光图画,引读第一自然段,使学生与文本、作者再次产生共鸣,在脑海中形成一幅蓝天共碧草一色,牛羊与骏马齐奔的美丽画卷。激起他们对草原的无限热爱。

通过这一系列的“读、悟、议、赏、再读”让学生加深理解和体验,从而受到情感熏陶获得思想启迪,最终达到突破教学重难点的目的。

(四)总结评价,拓展延伸

1、总结写法。师:作者先写了草原的天空:天空明朗、可爱、空气清鲜,使人心情舒畅;然后写天底下的草原一碧千里,这是按照从(上)到(下)的顺序;又写了远处的小丘柔美,翠色欲流,近处的羊群似花,牛羊静立不动,这是按照从(远)到(近)的顺序。这就是方位顺序。你们在写作的时候,也可以灵活运用这样的顺序,或者从近到远,从下到上,都可以。

2、课堂最后,我播放歌曲《草原上升起不落的太阳》,让学生拿出课前收集的有关草原的资料。在优美的旋律中,学生互相交流展示。使学生的情感再次得到升华,个性再次得以释放,此时的课堂也将再次涌动着创造的生命力。

(五)安排作业,复习强化

1、请大家将本节课中自己喜欢的优美词句摘抄到《优美词句》小笔记本上。

2、俗话说:一方水土养育一方人,在这美丽的地方,又孕育着怎样的民族呢?老舍先生又是如何表现草原的人情美的呢?下节课,我们再一起去会会草原上的鄂温温克族人民。”请同学们课后预习剩下“人情美”的段落。

★ 《曲线与方程》说课稿

★ 第一单元《方程》第三课时

★ 凡卡第一课时说课稿

★ 一年级《夜色》第一课时说课稿

★ 高中数学说课稿范文

★ 高中数学说课稿

★ 高中数学说课稿模板

★ 高中数学《简易方程》教学反思

★ 《简易方程》说课稿

★ 矩形初中数学第一课时说课稿